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Abstract. The entropy of self-avoiding walks embedded in a square lattice has been Monte
Carlo estimated inside plane squares of various side sizesR. The length of the walks ranged
from one toR2 − 1 steps, the maximum allowed length, which corresponds to the so-called
Hamiltonian paths. It was found that if8 is the ratio of the occupied over the total number
of available lattice sites inside the square, the number of configurationsZ(8) scales to a good

approximation as [Y (8)]R
2
. The limitingY (8) curve has then been estimated from the available

data, and expressed as a fourth-degree polynomial in8. A table is given forZ(1), that is
Hamiltonian paths, comparing values obtained from the theoretical relationship given by Orland
et al, from the exact enumeration data of Mayeret al, and from the Monte Carlo estimates of
the present work.

1. Introduction

A Hamiltonian path (HP) is defined inside some bounded lattice as a path which fills all
available lattice sites without ever crossing itself. If the two ends of the path are on
adjacent lattice sites, the path is called a Hamiltonian circuit (HC). The number,Z(N),
of N -step HPs inside some bounded lattice is a long-standing problem in combinatorial
analysis. As far back as 1947, Orr [1] gave the asymptotic estimateZ(N) = AN , with
the following estimated bounds forA: plane square lattice 1.30 < A < 1.50, simple
cubic lattice 1.55 < A < 2.22. Flory [2], in 1953, using mean-field arguments, arrived
at the general estimateA = (q − 1)/e, whereq is the coordination number of the lattice
considered, ande the basis of Neperian logarithms. In 1963 Kasteleyn [3] gave the exact
solution for the subclass of alternatively oriented HPs on the plane square lattice (the so-
called Manhattan paths) which isZ(N)M = 1.338N , so that 1.338 was a new lower bound
for A in that case. Some time later, Domb [4] pointed out that an upper bound forA in
the case of the plane square lattice was provided by Lieb’s exact solution for the entropy of
two-dimensional ice [5], which yieldsA < 1.59. Other investigators who have addressed
the problem are Gordonet al [6] and Gujrati and Goldstein [7]. Important progress was
accomplished by Schmalzet al [8], who gave a precise asymptotic value ofA for HCs
in rectangles, using a transfer matrix method. Their result isA = 1.472, but according to
these authors, asymptotically, many features of HPs should be the same as for HCs. A more
general theory, applicable in principle to any dimensions, was devised in 1985 by Orland
et al [9], who, using Ising-model-like calculations, arrived at the following simple law for
HCs

A = q/e (1)
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which quite resembles the Flory law. Equation (1) yieldsA = 1.4716 for the plane square
lattice andA = 2.207 for the simple cubic lattice.

More recently, exact enumeration (EE) data have been reported forZ(N) by Mayeret
al [10] up to the 7×7 square lattice, and by Shakhnovichet al [11] for the 3×3×3 simple
cubic lattice. The last paper on the subject we are aware of is that of Pandeet al [12], who
enumerateZ(N) for cubic sublattices up to the 3× 4× 4 parallelogram.

The purpose of the present paper is the presentation of the Monte Carlo (MC) estimates
of Z(N) insideR × S rectangles, a particular case of which areR × R squares. In this
procedure,N , the number of steps of the self-avoiding walk, varies from 1 toR × S − 1,
the latter case corresponding to HPs. The basis of these MC estimates is provided by the
Rosenbluth–Rosenbluth procedure [13] for generating self-avoiding walks.

The following relationship to estimateZ(N) has been used [14]:

Z(N) = Zmax〈w〉(1− ARS)K (2)

where〈w〉, the ‘compactness parameter’ [14] (called also the Rosenbluth–Rosenbluth factor
[15]), is defined through

〈w〉 = (SZmax)
−1

{ S∑
j=1

4∏
i=1

(i)n
j

i

}
. (3)

Here nji is the number of instances where, in chainj of the MC sample, there werei
possible directions to continue generating the walk (16 i 6 3, except for the first step in
the chain, wherei may take the value 4).ARS is the attrition in reflecting statistics [14], that
is the probability of failure of an initiated chain. This attrition originates in the fact that a
growing chain may become trapped, so that further pursuing its generation procedure is not
possible. Both〈w〉 andARS are here computed by screeningone step ahead for available
directions. The case of screening several steps has been addressed by Meirovitch [16], but
his calculations are irrelevant for present purposes.Zmax is here equal to 4× 3N−1. Finally
K is the number of confined lattice sites.

It should be noticed that equation (3) is also valid for free (non-confined) self-avoiding
walks, by takingK = 1. This amounts to assuming that the walks being generated start
permanently from the same lattice site.

Understandably, a walk, whether free or confined, sees its attrition increasing with
increasingN . For HPs, where the confinement takes its uppermost value,ARS tends rapidly
to values close to one. For this reason, due to the computational times involved in obtaining
significant MC samples, it is not possible at the present time using PCs to obtain convenient
MC samples beyond the 9× 9 square lattice. The situation is, however, improved if one
considers not HPs, but chains somewhat shorter (that is chains which do not entirely fill the
square). By this procedure it is possible to extrapolate, as indicated in figure 1, to obtain
the value ofZ for HPs.

2. Monte Carlo procedures and results

Self-avoiding walks of various lengths have been computer generated inside plane rectangles
R × S and squaresR × R on the square lattice according to the Rosenbluth–Rosenbluth
procedure. The software used to this effect was an adaptation in two dimensions of the
software we used in previous papers [14]. Screening for available directions proceeded
one step ahead, so that equation (2) would be used as it is. Screening two (or more)
steps ahead would reduce the attritionARS, and correspondingly the definition of the〈w〉
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Figure 1. Y (8) = [Z(8)]1/R2
versus8, for n × n plane squares up to the 8× 8 plane

square. Here8 is the ratio of the lattice sites occupied by the self-avoiding walk over the total
number of available lattice sites, andZ(8) is the MC estimate for the number of configurations
corresponding to each8 value. Good scaling is observed, from which a limiting curve is drawn
and then expressed as a fourth-degree polynomial in8 (see text).

parameter in equation (3) will have to be changed. It was, however, empirically found that
screening more than one step was not convenient with respect to computational efficiency.
The standard value of the MC samples was 105 non-correlated configurations.

If one considers not only HPs, but also self-avoiding walks of any length inside some
confining geometry, one can define8 as being the ratio of occupied lattice sites by the
walk, over the total number of available lattice sites,8 = (N + 1)/R × S. Thus,8 = 1
for a HP.

Let Z(8) be the MC estimated value, through equation (2), for the number of available
configurations of anN -step confined self-avoiding walk. It was then empirically found for
squares that a plot of

Y (8) = [Z(8)]1/R2
(4)

versus8, yielded regular curves, which tended to a limiting curve as the dimensions of the
square were increased (figure 1).

This limit curve is analytically given through the following fourth-degree polynomial:

Y (8) = 1.0500+ 1.00008− 0.516782+ 1.733383− 1.866784. (5)

Thus, equations (5) and (4) provide a MC estimate of the number of available configurations
inside squares not too small, for walks of one step up to HPs. The procedure is similar for
R × S rectangles.

In table 1Z(8 = 1) values forR × R squares obtained from exact enumeration data
[10] are given, and for comparison values obtained using the Orlandet al [9] relationship
(1), and finally from MC estimates using equation (2). All data refer to non-oriented paths,
so that to obtain the number of oriented paths, one has to multiply the above data by two.
Let us notice thatZOrl in column three of the table refers to HCs, a subclass of HPs.
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Table 1. Comparison ofZ(8 = 1), that is the number of Hamiltonian paths insideR × R
squares from exact enumeration data [10], from the Orlandet al [9] theoretical relationship,
and from the MC estimates of the present work.ZOrl in the third column refers to Hamiltonian
circuits (see text).

ZOrl

n× n ZEE (1.4715)N ZMC

3× 3 20 22 20
4× 4 276 328 277
5× 5 4324 10 623 4335
6× 6 229 348 744 062 228 860
7× 7 13 535 280 112 847 720 1.3582× 107

8× 8 — 3.7059× 1010 2.7791× 109

9× 9 — 2.6352× 1013 —

The main advantage of the MC procedure to evaluate the number of HPs here presented,
lies in its flexibility and generality: the method is applicable to any dimensions, lattices, and
boundary geometries. In contrast, for example, the Orlandet al [9] theoretical procedure
is sensitive to boundary conditions. It would, for instance, be severely in error forR × 2
rectangles, where the number of HPs is given by the equation

Z(R × 2,8 = 1) = R2− R + 2 (6)

and not by the exponential law of equation (1).

References

[1] Orr W J C 1947Trans. Faraday Soc.43 12
[2] Flory P J 1953Principles of Polymer Chemistry(Ithaca, NY: Cornell University Press)
[3] Kasteleyn P W 1963Physica29 1329
[4] Domb C 1974Polymer15 259
[5] Lieb E H 1967Phys. Rev. Lett.18 692
[6] Gordon A, Kapadia P and Malakis A 1976J. Phys. A: Math. Gen.9 751
[7] Gujrati P D and Goldstein M 1981J. Chem. Phys.74 2596
[8] Schmalz T G, Hite G E and Klein D J 1984J. Phys. A: Math. Gen.17 445
[9] Orland H, Itzykson C and de Dominicis C 1985J. Physique Lett.46 L353

[10] Mayer J-M, Guez C and Dayantis J 1990Phys. Rev.B 42 660
[11] Shakhnovich E and Gutin A 1990J. Chem. Phys.93 5967
[12] Pande V S, Joerg C, Grosberg A U and Tanaka T 1994J. Phys. A: Math. Gen.27 6231
[13] Rosenbluth M and Rosenbluth N 1955J. Chem. Phys.23 356
[14] Jaeckel A and Dayantis J 1994J. Phys. A: Math. Gen.27 2653

Jaeckel A and Dayantis J 1994J. Phys. A: Math. Gen.27 7719
[15] Van Giessen A E and Szleifer I 1995J. Chem. Phys.102 9069
[16] Meirovitch H 1985Phys. Rev.A 32 3709 and references therein


